用于電壓轉換的開關穩壓器的電感器來臨時存儲能量。這些開關穩壓器的電感器的尺寸通常非常大,必然在開關穩壓器的印刷電路板(PCB)布局中為其安排位置。這項任務并不難,因為通過電感的電流可能會變化,但并非瞬間變化。變化只可能是連續的,通常相對緩慢。
開關穩壓器的電感器在兩個不同路徑之間來回切換電流。這種切換非常快,具體切換速度取決于切換邊緣的持續時間。開關電流流經的走線稱為熱回路或交流電流路徑,其在一個開關狀態下傳導電流,在另一個開關狀態下不傳導電流。在PCB布局中,應使熱回路面積小且路徑短,以便恰到好處地減小這些走線中的寄生電感。寄生走線開關穩壓器的電感器會產生無用的電壓失調并導致電磁干擾(EMI)。
圖1.用于降壓轉換的開關穩壓器(帶如虛線所示的關鍵熱回路)。
圖1所示為一個降壓調節器,其中關鍵熱回路顯示為虛線。可以看出,線圈L1不是熱回路的一部分。因此,可以假設該開關穩壓器的電感器的放置位置并不重要。使電感器位于熱回路以外是正確的——因此在圖1個實例中,安放位置是次要的。不過,應該遵循一些規則。
不得在開關穩壓器的電感器下方(PCB表面或下方都不行)、在內層里或PCB背面布設敏感的控制走線。受電流流動的影響,線圈會產生磁場,結果會影響信號路徑中的微弱信號。在開關穩壓器中,一個關鍵信號路徑是反饋路徑,其將輸出電壓連接到開關穩壓器IC或電阻分壓器。
還應注意,實際線圈既有電容效應,也有電感效應。首先的線圈繞組直接連接到降壓開關穩壓器的開關節點,如圖1所示。結果,線圈里的電壓變化與開關節點處的電壓一樣強烈而迅速。由于電路中的開關時間非常短且輸入電壓很高,PCB上的其他路徑上會產生相當大的耦合效應。因此,敏感的走線應該遠離線圈。
圖2.帶有線圈安放位置的ADP2360降壓轉換器的示例電路。
圖2所示為ADP2360的示例布局。在本圖中,圖1中的重要熱回路標為綠色。從圖中可見,黃色反饋路徑離線圈L1有一定距離。它位于PCB的內層。
一些電路設計者甚至不希望線圈下的PCB中有任何銅層。例如,它們會在電感下方提供切口,即使在接地平面層中也是如此。其目標是防止線圈下方接地平面因線圈磁場形成渦流。這種方法沒有錯,但也有爭論認為,接地平面要保持一致,不應中斷:
用于屏蔽的接地平面在不中斷時效果很好。
PCB的銅越多,散熱越好。
即使產生渦流,這些電流也只能局部流動,只會造成很小的損耗,并且幾乎不會影響接地平面的功能。
因此,同意接地平面層,甚至是線圈下方,也應保持完整的觀點。
總之,我們可以得出結論,雖然開關穩壓器的線圈不是臨界熱回路的一部分,但不在線圈下方或靠近線圈處布敏感的控制走線卻是明智的。PCB上的各種平面——例如,接地平面或VDD平面(電源電壓)——可以連續構造,無需切口。
想了解更多關于開關穩壓器的電感器歡迎咨詢;
-THE END -
版權東莞頤特電子所有 如涉及版權問題請及時聯系處理
電感丨貼片電感丨一體成型電感丨共模電感丨繞線電感丨磁環電感丨功率電感丨電感廠家丨頤特電子