射頻特斯拉線圈是利用電路諧振進行能量變換的高壓發生裝置。它的工作原理與普通變壓器有較大不同。普通變壓器的耦合系數K一般接近于1,所以初級和次級電壓基本成比例關系;而特斯拉線圈的耦合系數一般都小于0.3,工作時,兩級電壓比例是隨時間變化而變化的,不成線性關系。下面先來看看特斯拉線圈的主體結構:
射頻特斯拉線圈的主體部分包括:升壓充電回路、初級諧振回路和次級回路;初級諧振回路由初級線圈、主電容、打火器構成。次級諧振回路次級線圈和放電頂端構成,電容和電感的數值可根據實際制作而定。但最關鍵的是兩回路的諧振頻率要相同。
射頻特斯拉線圈的工作過程:電源要先給主電容充電,當電壓達到打火器的放電閥值時,打火器間隙的空氣電離打火,近似導通,建立初級諧振回路,通過振蕩向次級回路傳遞能量。次級回路隨之振蕩,接收能量,放電頂罩的電壓逐漸增大,并電離附近的空氣,‘尋找’放電路徑,一旦與地面形成‘通路’,‘閃電’也就出現了,如果沒有‘閃電’,幾個(次數主要與耦合系數有關)周波后,初級回路能量釋放完畢。較大部分的能量都轉移到次級回路上,一部分能量損耗在回路上。次級回路繼續振蕩,并反客為主,帶動初級回路振蕩,以相同的方式把剛才得到的能量還給初級回路。但又一部分能量損耗在回路上,如此反復(見原理演示圖),直到損耗掉大部分能量。打火器兩端電壓和電流都不足后,打火器等效斷開,由外部電源繼續給主電容充電。充電過程要比放電過程長得多,大概在3~10毫秒左右。所以特斯拉線圈放電頻度都在每秒100次以上,也使肉眼看上去為連續放電效果。
原理演示圖:
想要了解更多射頻特斯拉線圈,歡迎咨詢!
-THE END -
版權東莞頤特電子所有 如涉及版權問題請及時聯系處理
電感丨貼片電感丨一體成型電感丨共模電感丨繞線電感丨磁環電感丨功率電感丨電感廠家丨頤特電子